ocivm.com > Science & Applications > LEED and AES Data Library > References

LEED & AES Data Library > Browse by Element/CompoundBrowse by Application > References

Low Energy Electron Diffraction & Auger Electron Spectroscopy Data


References

  1. Tsui, Y. (2000). A study of a strongly geometrically frustrated magnet: Gadolinium gallium garnet. (PhD Dissertation) Retrieved from ProQuest Dissertations and Theses database (UMI No. 9967308)
  2. The Ioffe Physico-Technical Institute (n.d). GaN- Gallium Nitride Basic Parameters for Wurtzite crystal structure. Retrieved from http://www.ioffe.ru/SVA/NSM/Semicond/GaN/basic.html
  3. He H., Blanco M., & Pandey R. (2006) Electronic and thermodynamic properties of β-Ga2O3. Applied Physics Letters, 88. Retrieved from https://doi.org/10.1063/1.2218046
  4. The Ioffe Physico-Technical Institute (n.d). SiC- Silicon Carbide Basic Parameters. Retrieved from http://www.ioffe.ru/SVA/NSM/Semicond/SiC/basic.html
  5. K.B. Modia, et al. (2016) Study on Thermodynamic Properties of Fe3+-Substituted Yttrium Iron Garnets. Acta Physica Polonica, 778 – 784. Retrieved from http://przyrbwn.icm.edu.pl/APP/PDF/130/a130z3p20.pdf
  6. The Ioffe Physico-Technical Institute (n.d). Si- Silicon Basic Parameters at 300K. Retrieved from http://www.ioffe.ru/SVA/NSM/Semicond/Si/basic.html
  7. Table 1.
  8. Landolt-Börnstein - Group III Condensed Matter (1999) Magnesium oxide (MgO) Debye temperature, heat capacity, density, melting and boiling points, hardness. Retrieved from: https://doi.org/10.1007/b71137
  9. The Ioffe Physico-Technical Institute (n.d). AlN- Aluminum Nitride- Basic Parameters. Retrieved from http://www.ioffe.ru/SVA/NSM/Semicond/AlN/basic.html
  10. Lu Y., Jia D., Gao F., Hu T., & Chen Z. (2015) First-principle calculations of the thermal properties of SrTiO3 and SrO(SrTiO3)n (n=1,2) Solid State Communications, 201, 25- 30. Retrieved from https://doi.org/10.1016/j.ssc.2014.09.011
  11. Dowben P. A., LaGraffe D., & Onellion M. (1990). The chemistry of the gadolinium-nickel interface, 8 (3), 2741. Retrieved from https://pdfs.semanticscholar.org/159b/61bcd91991012f8d56e566d6cac10facbdcf.pdf
  12. Mróz S. & Mróz A. (1981). Leed measurements of the surface debye temperature for the (110) nickel face. Surface Science . 109 (2), 444-450. Retrieved from https://www.sciencedirect.com/science/article/pii/0039602881904994
  13. American Elements. (n.d.). Nickel Single Crystal. Retrieved from https://www.americanelements.com/nickel-single-crystal-7440-02-0#related-app-industries
  14. Shojaee E., Mohammadizadeh M. R. (2009). First-principles elastic and thermal properties of TiO2: a phonon approach, 6. Retrieved from https://journals-scholarsportal-info.proxy.lib.uwaterloo.ca/pdf/09538984/v22i0001/1_featpotapa.xml
  15. Fornari, R. (2018). Single crystals of electronic materials: Growth and properties . Duxford: Woodhead Publishing.
  16. Luo, X., & Wang, B. (2008). Structural and elastic properties of LaAlO[sub 3] from first-principles calculations. Journal of Applied Physics,104 (7), 073518-1-073518-7. Retrieved from https://www.researchgate.net/profile/Biao_Wang4/publication/224442987_Structural_and_elastic_properties_of_LaAlO3_from_first-principles_calculations/links/0912f50a337078ecee000000.pdf.
  17. Tarumi R. et al. (2012). Low Temperature Elastic Constants and Piezoelectric Coefficients of LiNbO3 and LiTaO3: Resonant Ultrasound Spectroscopy Measurements and Lattice Dynamics Analysis. Japanese Journal of Applied Physics . 51 (7S), 07GA02-3
  18. Sumets, Maxim. (2018) Lithium Niobate-based Heterostructures: Potential Applications, Synthesis Methods, Structure and Properties. Chapter 1.2. IOP Science. Retrieved from https://iopscience.iop.org/book/978-0-7503-1729-0/chapter/bk978-0-7503-1729-0ch1#bk978-0-7503-1729-0ch1s1-2.
  19. American Elements. (2017) Magnesium-doped Lithium Niobate. Retrieved from https://www.americanelements.com/magnesium-doped-lithium-niobate
  20. Deltronic Crystal Industries, Inc. (2013). Iron Doped Lithium Niobate. Retrieved from http://deltroniccrystal.com/deltronic_crystal_products/id_lithium_niobate
  21. Savvatimskiy, A. I., Onufriev, S. V., & Konyukhov, S. A. (2017). Thermophysical properties of graphite HOPG and HAPG in the solid state and under melting (from 2000 K up to 5000 K). Journal of Physics: Conference Series, 891, 012319. doi:10.1088/1742-6596/891/1/012319
  22. Fraxedas, J., Garcia-Manyes, S., Gorostiza, P., & Sanz, F. (2002). Nanoindentation: Toward the sensing of atomic interactions. Proceedings of the National Academy of Sciences, 99(8), 5228-5232. doi:10.1073/pnas.042106699
  23. Oh, J. P., Kondo, T., Hatake, D., & Nakamura, J. (2009). Elastic and inelastic scattering components in the angular intensity distribution of He scattered from graphite. Surface Science, 603(6), 895-900. doi:10.1016/j.susc.2009.02.007
  24. Legall, H., Stiel, H., Nickles, P., Bjeoumikhov, A. A., Langhoff, N., Haschke, M., . . . Wedell, R. (2005). Applications of highly oriented pyrolytic graphite (HOPG) for x-ray diagnostics and spectroscopy. Laser-Generated, Synchrotron, and Other Laboratory X-Ray and EUV Sources, Optics, and Applications II. doi:10.1117/12.614847
  25. Chandler, David. (2010). “Silicon can be made to melt in reverse”. MIT News Office. Retrieved from http://news.mit.edu/2010/melting-silicon-0802
  26. “Synthetic Sapphire” (n.d). Stanford Materials. Retrieved from http://www.stanfordmaterials.com/synthetic-sapphire.html
  27. “Debye Model for Specific Heat”(2019). Engineering LibreTexts. Retrieved from https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Electronic_Properties/Debye_Model_For_Specific_Heat
  28. The Ioffe Physico-Technical Institute (n.d). SiC- Silicon Carbide Basic Parameters. Retrieved from http://www.ioffe.ru/SVA/NSM/Semicond/SiC/basic.html
  29. The Ioffe Physico-Technical Institute (n.d). Si- Silicon Basic Parameters at 300K. Retrieved from http://www.ioffe.ru/SVA/NSM/Semicond/Si/basic.html
  30. Sanchela, A. V., Thakur, A. D., & Tomy, C. V. (2014). Anisotropic thermal conductivity and thermopower of In2Te5 single crystal. doi:10.1063/1.4872970
  31. Zhou, H.,Maize, K.,Noh, J., Shakouri, A., & Ye, P. D. (2017). Thermodynamic Studies of Ga2O3 Nanomembrane Field-Effect Transistors on a Sapphire Substrate. ACS Omega, 2, 11(7723-7729). doi:10.1021/acsomega.7b01313.s001
  32. Braginsky, L., Shklover, V., Hofmann, H., & Bowen, P. (2004). High-temperature thermal conductivity of porousAl2O3nanostructures. Physical Review B, 70(13). doi:10.1103/physrevb.70.134201
  33. Alumina Oxide Al2O3 – properties & applications: Advanced Ceramics. (2019). Retrieved August 01, 2020, from https://www.ortechceramics.com/creamic-materials/alumina-ceramics/
  34. Roder, C., Einfeldt, S., Figge, S., & Hommel, D. (2005). Temperature dependence of the thermal expansion of GaN. Physical Review B, 72(8). doi:10.1103/physrevb.72.085218
  35. Gallium Nitride Applications. (n.d.). Retrieved August 01, 2020, from https://www.theiet.org/publishing/inspec/researching-hot-topics/gallium-nitride-applications/
  36. Pramana, S. S., Cavallaro, A., Qi, J., Nicklin, C. L., Ryan, M. P., & Skinner, S. J. (2017). Understanding surface structure and chemistry of single crystal lanthanum aluminate. Scientific Reports, 7(1). doi:10.1038/srep43721
  37. Michael, P. C., Trefny, J. U., & Yarar, B. (1992). Thermal transport properties of single crystal lanthanum aluminate. Journal of Applied Physics, 72(1), 107-109. doi:10.1063/1.352166
  38. Abrahams, S., & Bernstein, J. (1967). Ferroelectric lithium tantalate-I. Single crystal X-ray diffraction study at 24° C. Solid State Communications, 5(6), Ii. doi:10.1016/0038-1098(67)90608-4
  39. Plehnert, C., Norkus, V., Möhling, S., & Hayes, A. (1995). Reactive ion beam etching of lithium tantalate and its application for pyroelectric infrared detectors. Surface and Coatings Technology, 74-75, 932-936. doi:10.1016/0257-8972(94)08207-3
  40. Ganesh, I. (2013). A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications. International Materials Reviews, 58(2), 63-112. doi:10.1179/1743280412y.0000000001
  41. Slifka, A., Filla, B., & Phelps, J. (1998). Thermal conductivity of magnesium oxide from absolute, steady-state measurements. Journal of Research of the National Institute of Standards and Technology, 103(4), 357. doi:10.6028/jres.103.021
  42. Magnesia - Magnesium Oxide (MgO) Properties & Applications. (2019). Retrieved August 02, 2020, from https://www.azom.com/article.aspx?ArticleID=54
  43. Lead-Tungstate Crystals PbWO4. (n.d.). Retrieved August 02, 2020, from https://www.msesupplies.com/products/pbwo4-crystals-lead-tungstate
  44. Lu, Y., Jia, D., Gao, F., Hu, T., & Chen, Z. (2015). First-principle calculations of the thermal properties of SrTiO 3 and SrO(SrTiO 3 ) n ( n =1,2). Solid State Communications, 201, 25-30. doi:10.1016/j.ssc.2014.09.011
  45. Strontium Titanate (SrTiO3) Nanoparticles – Properties, Applications. (2019). Retrieved August 02, 2020, from https://www.azonano.com/article.aspx?ArticleID=3389
  46. Shojaee, E., & Mohammadizadeh, M. R. (2009). First-principles elastic and thermal properties of TiO2: A phonon approach. Journal of Physics: Condensed Matter, 22(1), 015401. doi:10.1088/0953-8984/22/1/015401
  47. Titanium Dioxide (TiO2) Uses and Market Data. (n.d.). Retrieved August 02, 2020, from https://www.icis.com/explore/resources/news/2007/11/07/9076546/titanium-dioxide-tio2-uses-and-market-data/
  48. Sirdeshmukh, L., Kumar, K. K., Laxman, S. B., Krishna, A. R., & Sathaiah, G. (1998). Dielectric properties and electrical conduction in yttrium iron garnet (YIG). Bulletin of Materials Science, 21(3), 219-226. doi:10.1007/bf02744973
  49. Mallmann, E., Sombra, A., Goes, J., & Fechine, P. (2013). Yttrium Iron Garnet: Properties and Applications Review. Solid State Phenomena, 202, 65-96. doi:10.4028/www.scientific.net/ssp.202.65
  50. Debye Temperature: The Elements Handbook at KnowledgeDoor. (n.d.). Retrieved August 03, 2020, from http://www.knowledgedoor.com/2/elements_handbook/debye_temperature.html
  51. Facts About Nickel. (n.d.). Retrieved August 03, 2020, from https://geology.com/usgs/uses-of-nickel/