
Surface Crystallography Spectrometer - IntegraLEED

based on Low Energy Electron Diffraction (LEED) and Auger Electron Spectroscopy (AES)

MODEL LEED 450 (BDL450) with Integral Shutter

Features:

- High angular & energy resolution LEED & AES
- Miniature Electron Gun with double focusing
- Superior magnetic shielding
- Suitable for "in situ" epitaxial growth monitoring
- Integral Shutter
- External Linear Retraction
- Low Outgassing Rate
- Easy add-on AES

Applications

Miniature sized and high performance characterization tool for surface crystallography of single crystals and "in-situ" epitaxy.

The LEED 450 is capable of providing LEED and AES data for a wide range of samples.

The miniature instrument size allows for integration into any UHV system.

Materials suitable for characterization should be single crystals and epitaxial films in categories such as: 2D materials, semiconductors, metals, oxides and magnetic films.

Canada: 200 Stronach Cres., London, Ontario, N5V3A1 USA: 6405 Inducon Drive West, Sanborn (Niagara County), NY, 14132 TEL. (519) 457-0878, FAX (519) 457-0837 E-mail: info@ocivm.com Website: www.ocivm.com

IntegraLEED - MODEL LEED 450

Specifications

LEED-AUGER OPTICS (Model BDL450)

Retarding Field Analyze	r Concentric assembly of hemispherical grids
	Working distance from sample 10 mm
Grid Material	Gold coated tungsten wire mesh
	(100 mesh, 81% transparency)
Energy Resolution	0.2% - 0.5% at low modulation volt.
Glass-Display	Fused silica glass coated with indium-tin oxide
	conductive layer and P31 phosphor
	(ZnS:Ag:Cu-green, 525 nm wavelength)
	90° angle of acceptance from sample at a
	distance of 32 mm
Monitoring	Standard viewport on NW63 (4.5" CF) Flange
Linear Motion	External nipple with bellow up to 150mm retraction
Integral Shutter	Open and close at any position of the linear motion
Magnetic Shielding	Mu-metal cylinder with front cover for maximum magnetic
	field attenuation
Assembly	Extreme-high-vacuum compatibility with stainless steel, high
	alumina and gold-plated copper alloy materials
Mounting	4.5" (DN63CF) double sided conflat flange with
	port length range 145 mm - 580 mm

Integral Miniature Electron Gun

Beam Energy	LEED 5 eV to 750 eV
	AES 5 eV to 3000 eV
Beam Current	LEED 2 μA at 100 eV and 0.5 mm beam size
	AES up to 100 µA at 3 keV
Beam Size	from 1 mm to 250 μm - adjusted by wehnelt voltage
Electron Source	Tungsten-2%Thoriated filament standard,
	single crystal LaB6 filament optional
Energy Spread	0.45 eV (thoriated-tungsten filament)
Overall Size	10 mm lens diameter and 80 mm length

Ordering Guide

LEED Application:

BDL450	LEED optics with integral electron gun on 4.5" flange - 3 Grids
LMX-EXT	External linear motion (nipple-bellow) (X=retraction distance)
ISH	Integral shutter
LPS075-D	Digital power supply with voltage range 0 - 750 V
LIM12	LEED imaging software with CCD camera, full version (optional)
LIM12B	LEED imaging software with CCD camera, basic version (optional)

LEED and AES Application:

BDL450	LEED optics with integral electron gun on 4.5" flange - 4 Grids
LMX-EXT	External linear motion (nipple-bellow) (X=retraction distance)
ISH	Integral shutter
LPS300-D	Digital power supply with voltage range 0 - 3 kV
LOA10-AES	Digital AES controller with ramp voltage, sinewave oscillator,
	lock-in and AES software
LIM12	LEED imaging software with CCD camera, full version (optional)
LIM12B	LEED imaging software with CCD camera, basic version (optional)

Control Electronics

LPS075-D Digital LEED

Power supply (0-750 V) with USB interface and PC control software for Windows 10. True primary beam current and total emission measurements. Automatic start-up and shut down, 10 memory settings including standby and outgassing mode with timer, constant beam current mode.

LPS300-D Digital LEED-AES

Power supply (0-3.2 kV) with USB interface and PC control software for Windows 10. True primary beam current and total emission measurements. Automatic start-up and shut down, 10 memory settings including outgassing with timer, automatic switch from LEED to AES, constant beam current mode.

LOA10-AES

Digital AES controller with lock-in amplifier, AES high voltage ramp board 0-2.0 kV with precision sinewave oscillator (0.5-20 Vpk-pk) and AES software for Windows 10. USB communication to PC.

LEED Software

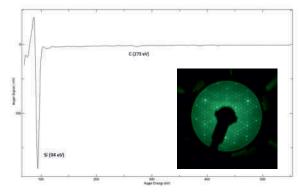
LIM12B

Basic LEED pattern measurements and analysis software and hardware for Windows 10 including:

- Automatic LEED pattern acquisition
- CCD camera
- Flange Mounting kit with ambient light cover and cables

LIM12

Full version LEED pattern measurements and analysis software and hardware for Windows 10 including:

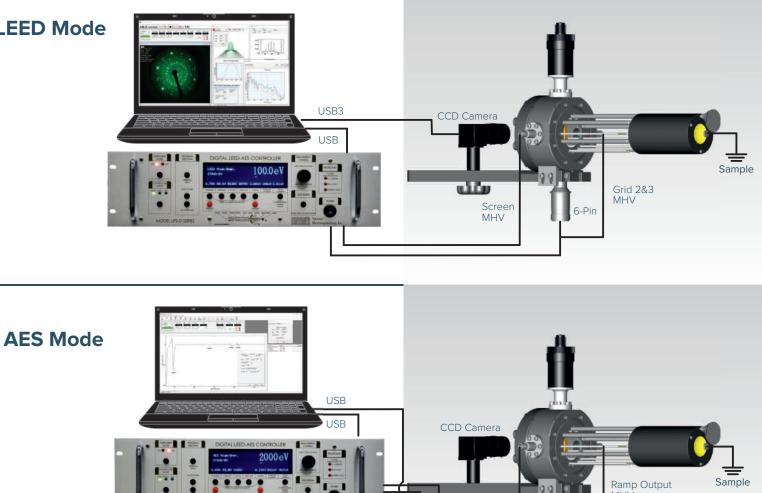

- CCD camera
- Flange mounting kit with ambient light cover and cables
- Software features:
 - o Automatic LEED pattern acquisition
 - o Automatic I-V analysis with spot tracking
 - o Automatic I-T analysis
 - o Automatic spot profile analysis

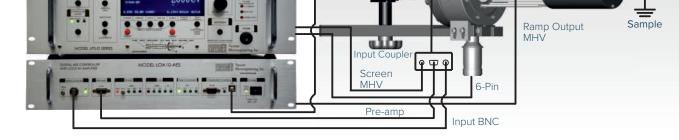
CCD Camera Specifications

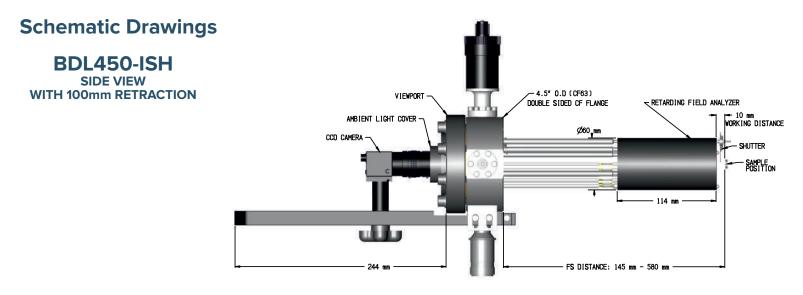
- 12-bit colour high performance video CCD camera with sensitivity control and USB3.1 interface
- 1/3" CCD sensor size, image size: 1.3 MP (1288x964), 3.75 um pixel size, CS-mount lenses
- Linear Full Well: 9000e-, Dynamic Range: 59 dB

Data

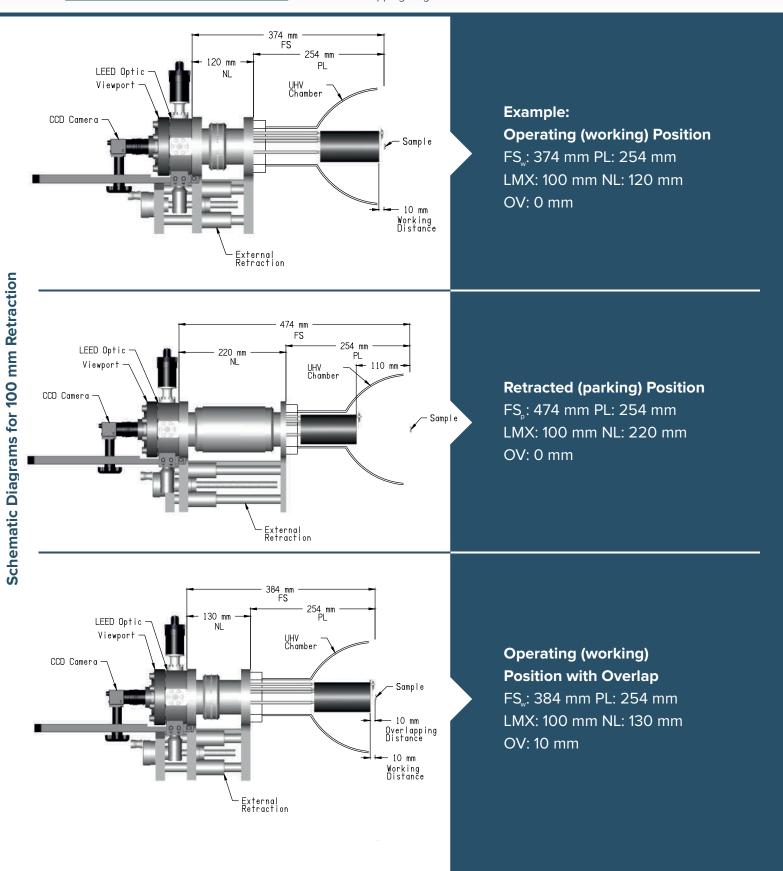
LEED pattern and AES spectrum Si (111) - single crystal wafer at 80 eV beam energy after thermal annealing in UHV




Link for more data: http://www.ocivm.com/leed-aes-data.html


IntegraLEED - MODEL LEED 450

Connection Diagrams


IntegraLEED - MODEL LEED 450

LEED Optics and UHV Chamber Configuration

Calculation formula for Flange-Sample distance and Retraction length:

 $\label{eq:FS} \begin{array}{l} \textbf{FS}_{w} = \textbf{OL} + \textbf{WD} = \textbf{PL} + \textbf{B} + \textbf{OV} \\ \textbf{FS}_{p} = \textbf{FS}_{w} + \textbf{LMX} \end{array}$

 FS_{w} - flange to sample distance in working position FS_{p} - flange to sample distance in parking position LMX - retraction length B - minimum bellow length OV - overlapping length OL - fixed optic length WD - working distance PL - port length NL - current bellow length

